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Abstract

The quantum completion̄A of the space of connections in a manifold can be seen as the set of
all morphisms from the groupoid of the edges of the manifold to the (compact) gauge group. This
algebraic construction generalizes an analogous description of the gauge-invariant quantum con-
figuration spaceA/G of Ashtekar and Isham, clarifying the relation between the two spaces. We
present a description of the groupoid approach which brings the gauge-invariant degrees of freedom
to the foreground, thus making the action of the gauge group more transparent. © 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Theories of connections play an important role in the description of fundamental inter-
actions, including Yang–Mills theories [21], Chern-Simons theories [22] and gravity in the
Ashtekar formulation [1]. Typically in such cases, the classical configuration spaceA/G of
connections modulo gauge transformations is an infinite-dimensional non-linear space of
great complexity, challenging the usual field quantization techniques.

Having in mind a rigorous quantization of theories of connections and eventually of grav-
ity, methods of functional calculus in an extension ofA/G were developed over the last
decade. For a compact gauge groupG, the extensionA/G introduced by Ashtekar and Isham
[2] is a natural compact measurable space, allowing the construction of well-defined diffeo-
morphism invariant measures [3,4,8]. Like in the case of measures in infinite-dimensional
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linear spaces, which appear in the context of constructive quantum scalar field theory, in-
teresting measures inA/G are expected to be supported not on classical configurations but
on genuine (distributional-like) generalized connections (this was indeed proven to be the
case for the Ashtekar–Lewandowski measure [3], in [17,18]).

In later developments, Baez [7] considered an extensionĀ of the spaceA of smooth
connections. In this case one still has to divide by the appropriate action of gauge trans-
formations. Besides being equally relevant for integral calculus, the spaceĀ is particularly
useful for the definition of differential calculus inA/G, fundamental in the construction of
quantum observables [5].

The construction of bothA/G andĀ rely crucially on the use of Wilson variables (and
generalizations), bringing to the foreground the important role of parallel transport defined
by certain types of curves. In this work we will consider only the case of piecewise analytic
curves, for which the formalism was originally introduced, although most of the arguments
apply equally well to the more general piecewise smooth case developed by Baez and Sawin
[10] and later by Lewandowski and Thiemann [16] (see also [19] and [11,12] for more recent
developments). For both̄A andA/G one considers functions onA of the form

A � A �→ F(h(c1, A), . . . , h(cn, A)), (1)

whereh(c,A) denotes the parallel transport defined by the curvec andF : Gn → C

is a continuous function. In the case ofA/G only closed curves — loops — are needed,
producing gauge-invariant functions, or functions onA/G. These functions are sufficient
to define (overcomplete) coordinates onA/G [2]. For compactG, the set of all functions
(1) is naturally a normed commutative∗-algebra with identity. The completion of such an
algebra is, therefore, a commutative unitalC∗-algebra and, according to Gelfand theory,
this C∗-algebra can be seen as the algebra of continuous functions on a compact space
called the spectrum of the algebra. The spectrum of the above algebras —A/G for the
closed curves case and̄A for the general open curves case — are natural completions of
A/G andA, respectively, and appear as good candidates to replace them in the quantum
context.

To a large extent, the definition of functional calculus onA/G rely on the fact that, while
being extremely complex spaces, bothA/G andĀ can be seen as projective limits of families
of finite-dimensional compact manifolds [3,4,17] (see also [7,10,16] for a formulation in
terms of inductive limits). This projective characterization gives us a great deal of control
over the spacesA/G andĀ, allowing the construction of measures and vector fields starting
from corresponding structures on the compact finite-dimensional spaces in the projective
families [3–5,7,17].

The projective approach leads also to an interesting interpretation of generalized con-
nections. For the case ofA/G, a distinguished group of equivalence classes of loops, called
the hoop groupHG [3], plays an important role, in the sense thatA/G can be identi-
fied with the space Hom[HG,G]/G of all homomorphisms (modulo conjugation) from
HG toG, with the topology on Hom[HG,G]/G being induced by a projective family la-
beled by finitely generated subgroups ofHG. As pointed out by Baez [9], for̄A a similar
role is played by a certain groupoid. In our opinion, however, this groupoid associated
to open curves has not yet occupied the place it deserves in the literature, possibly due
to the fact that groupoids have been introduced in the current mathematical physics
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literature only recently. Recall that a groupoid is a category such that all arrows are in-
vertible. Therefore, a groupoid generalizes the notion of a group, in the sense that a binary
operation with inverse is defined, the difference being that not all pairs of elements can be
composed.

In Section 2 of this work, we consider the projective characterization ofĀ using the
language of groupoids from the very beginning. This amounts to putting the usual approach
using graphs [5] in an appropriate algebraic framework, in a natural generalization of the
hoop group approach. Using this formalism, we show in Section 3 that the quotient ofĀ
by the action of the gauge group is homeomorphic toA/G. This new proof, establishing
directly the equivalence at the projective limit level, seems to us more transparent than the
proof one can obtain by combining results from [3–5,7,17].

2. Groupoid-projective formulation of Ā

2.1. Edge groupoid

LetΣ be an analytic, connected and orientabled-manifold. Let us consider the setE of
all continuous, oriented and piecewise analytic parametrized curves inΣ , i.e. maps

c : [0, t1] ∪ · · · ∪ [tn−1,1] → Σ,

which are continuous in all the domain [0,1], analytic in the closed intervals [tk, tk+1]
and such that the imagesc(]tk, tk+1[) of the open intervals ]tk, tk+1[ are submanifolds
embedded inΣ . In the setE of all such curves one may define the following maps.
Let σ : E → Σ be the map given byσ(c) = c([0,1]), c ∈ E . The mapss (source)
andr (range) are defined, respectively, bys(c) = c(0), r(c) = c(1). Given two curves
c1, c2 ∈ E such thats(c2) = r(c1), let c2c1 ∈ E denote the natural composition given
by

(c2c1)(t) =
{
c1(2t) for t ∈ [0, 1

2]

c2(2t − 1) for t ∈ [ 1
2,1].

This composition defines a binary operation in a well-defined subset ofE×E . Consider also
the operationc �→ c−1 given byc−1(t) = c(1 − t). Strictly speaking, the composition of
parametrized curves is not associative, since the curves(c3c2)c1 andc3(c2c1) are related by
a reparametrization, i.e. by an orientation preserving piecewise analytic diffeomorphism
[0,1] → [0,1]. Similarly, the curvec−1 is not the inverse of the curvec. Following
[2,3,9], we describe next an appropriate equivalence relation inE . The corresponding set
of equivalence classes is a well-defined groupoid [9], generalizing the group of hoops
introduced by Ashtekar and Lewandowski [3].

Let G be a (finite-dimensional) connected and compact Lie group and letP(Σ,G) be
a principalG-bundle overΣ . For simplicity, we assume that the bundle is trivial and that
a fixed trivialization has been chosen. LetA be the space of smooth connections on this
bundle. The parallel transport associated with a given connectionA ∈ A and a given curve
c ∈ E will be denoted byh(c,A).
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Definition 1. Two elementsc andc′ of E are said to be equivalent if

1. s(c) = s(c′), r(c) = r(c′);
2. h(c,A) = h(c′, A) ∀A ∈ A.

It is obvious that two curves related by a reparametrization are equivalent. Two curves
c andc′ which can be written in the formc = c2c1, c′ = c2c

−1
3 c3c1 are also equivalent. It

can be shown that, for compact non-commutative Lie groupsG, these two conditions are
equivalent to (2) (see, e.g. [4,16]). Thus, in the context of non-commutative compact Lie
groups, the equivalence relation above is independent of the group.

We will consider non-commutative groups from now on and denote the set of all above
defined equivalence classes byEG. It is clear by (1) that the mapss andr are well-defined
in EG. The mapσ can still be defined for special elements called edges. By edges we
mean elementse ∈ EG which are equivalence classes of analytic (in all domain) curves
c : [0,1] → Σ . It is clear that the imagesc1([0,1]) andc2([0,1]) of two equivalent analytic
curves coincide and, therefore, we defineσ(e) as beingσ(c), wherec is any analytic curve
in the class of the edgee.

We discuss next the natural groupoid structure on the setEG. We will follow the termi-
nology of category theory and refer to elements ofEG as arrows.

The composition of arrows is defined by the composition of elements ofE : if γ, γ ′ ∈ EG
are such thatr(γ ) = s(γ ′) one definesγ ′γ as the equivalence class ofc′c, wherec (resp.
c′) belongs to the classγ (γ ′). The independence of this composition with respect to the
choice of representatives follows fromh(c′c,A) = h(c′, A)h(c,A) and from condition (2)
above. The composition inEG is now associative, since(c3c2)c1 andc3(c2c1) belong to the
same equivalence class.

The points ofΣ are called objects in this context. Objects are in one-to-one corre-
spondence with identity arrows: givenx ∈ Σ the corresponding identity1x ∈ EG is the
equivalence class ofc−1c, with c ∈ E such thats(c) = x. If γ is the class ofc thenγ−1 is
the class ofc−1. It is clear thatγ−1γ = 1s(γ ) andγ γ−1 = 1r(γ ).

One, therefore, has a well-defined groupoid, whose set of objects isΣ and whose set of
arrows isEG. As usual, we will use the same notation —EG — both for the set of arrows
and for the groupoid. Notice that every elementγ ∈ EG can be obtained as a composition
of edges. Therefore, the groupoidEG is generated by the set of edges, although it is not
freely generated, since composition of edges may produce new edges.

Forx, y ∈ Σ , let

Hom[x, y] := {γ ∈ EG|s(γ ) = x, r(γ ) = y} (2)

be the set of all arrows starting atx and ending aty. It is clear that Hom[x, x] is a group
∀x ∈ Σ . Since the manifoldΣ is taken to be connected, the groupoidEG is also connected,
i.e. Hom[x, y] is a non-empty set, for every pairx, y ∈ Σ . In this case, any two groups
Hom[x, x] and Hom[y, y] are isomorphic. Let us fix a pointx0 ∈ Σ and consider the group
Hom[x0, x0]. This group is precisely the so-called hoop groupHG [3], whose elements are
equivalence classes of piecewise analytic loops. The elements of Hom[x0, x0] are called
hoops and the identity arrow1x0 will be called the trivial hoop.
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Given thatEG is connected, its elements may be written as compositions of elements of
Hom[x0, x0] and of an appropriate subset of the set of all arrows.

Lemma 1. Suppose that an unique arrowγx ∈ Hom[x0, x] is given for eachx ∈ Σ , γx0

being the trivial hoop. Then for everyγ ∈ EG there is a uniquely definedβ ∈ Hom[x0, x0]
such that

γ = γr(γ )βγ
−1
s(γ ). (3)

This result can be obviously adapted for any connected subgroupoidΓ ⊂ EG. The converse
of this result is the following lemma, where HomΓ [x0, x0] denotes the subgroup of the hoops
that belong toΓ .

Lemma 2. Let F be a subgroup ofHom[x0, x0] andX ⊂ Σ be a subset ofΣ such that
x0 ∈ X. Suppose that an unique arrowγx ∈ Hom[x0, x] is given for eachx ∈ X, γx0 being
the trivial hoop. Then the setΓ of all arrows of the formγxβγ−1

y , withβ ∈ F andx, y ∈ X,
is a connected subgroupoid ofEG, and the groupHomΓ [x0, x0] coincides with F.

Proof. To prove thatΓ is subgroupoid it is sufficient to show that (i) every arrowγ ∈ Γ

is invertible inΓ and (ii) that the compositionγ γ ′ belongs toΓ , for everyγ, γ ′ ∈ Γ such
thatγ γ ′ is defined onEG. The inverse ofγxβγ−1

y is γyβ−1γ−1
x ∈ Γ , proving (i). As for

(ii), notice that givenγ = γxβγ
−1
y andγ ′ = γx′β ′γ−1

y′ , the compositionγ γ ′ is defined if

and only ify = x′, and thereforeγ γ ′ = γx(ββ
′)γ−1

y′ belongs toΓ , sinceF is a group. The
groupoidΓ is connected, given that every objectx ∈ X is connected tox0 by an arrow. If
γ = γxβγ

−1
y belongs to HomΓ [x0, x0] thenx = y = x0 andγ = β ∈ F . Conversely, it is

obvious thatF ⊂ HomΓ [x0, x0]. �

2.2. Ā as a projective limit

By the very definition ofEG (see condition (2) in Definition 1), the parallel transport is
well-defined for any element ofEG. To emphasize the algebraic role of connections and
to simplify the notation, we will denote byA(γ ) the parallel transporth(c,A) defined by
A ∈ A and any curvec in the equivalence classγ ∈ EG. Let us recall that the bundle
P(Σ,G) is assumed to be trivial, and thereforeA(γ ) ≡ h(c,A) defines an element of the
groupG. For every connectionA ∈ A, the map fromEG toG given by

γ �→ A(γ ) (4)

is a groupoid morphism, i.e.,A(γ ′γ ) = A(γ ′)A(γ ) andA(γ−1) = A(γ )−1. Thus, there is a
well-defined injective but not surjective [2,3,7,15] map fromA to the set Hom[EG,G] of all
morphisms fromEG toG, through whichA can be seen as a proper subset of Hom[EG,G]. It
turns out that Hom[EG,G], when equipped with an appropriate topology, is homeomorphic
to the spaceĀ of generalized connections [4,9,17]. This identification can be proved using
the fact that Hom[EG,G] is the projective limit of a projective family labeled by graphs
in the manifoldΣ [5,6]. In what follows we will rephrase the projective characterization
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of Hom[EG,G] using the language of groupoids. We start with the set of labels for the
projective family leading to Hom[EG,G], using the notion of independent edges [3].

Definition 2. A finite set{e1, . . . , en} of edges is said to be independent if the edgesei can
intersect each other only at the pointss(ei) or r(ei), i = 1, . . . , n.

The edges in an independent set are, in particular, algebraically independent, i.e. it is
not possible to produce identity arrows by (non-trivial) compositions of the edges and their
inverses. Our condition of independent sets is of course stronger than the condition of
algebraic independence.

Let us denote byEG{e1, . . . , en} the subgroupoid ofEG generated by the independent
set{e1, . . . , en}, i.e.EG{e1, . . . , en} is the smallest subgroupoid containing all the edgesei ,
or explicitly, the subgroupoid whose objects are all the pointss(ei) andr(ei) and whose
arrows are all possible compositions of edgesei and their inverses. Groupoids of this type
are freely generated, given the algebraic independence of the edges.

In what follows we will denote byL the set of all subgroupoids for which there exists a
finite set of independent edges such thatL = EG{e1, . . . , en}. Clearly, the sets{e1, . . . , en}
and{eε1

1 , . . . , e
εn
n }, whereεj = ±1 (i.e.e

εj
j = ej or e−1

j ) generate the same subgroupoid,
and this is the only ambiguity in the choice of the set of generators of a given groupoid
L ∈ L. Thus, a groupoidL ∈ L is uniquely defined by a set{σ(e1), . . . , σ (en)} of images
of a set of independent edges. Notice that the union of the imagesσ(ei) is a graph in the
manifoldΣ , thus establishing the relation with the approach used in [5,7,8].

Let us consider in the setL the partial-order relation defined by inclusion, i.e. given
L,L′ ∈ L, we will say thatL′ ≥ L if and only if L is a subgroupoid ofL′. Recall thatL
is said to be a subgroupoid ofL′ if and only if all objects ofL are objects ofL′ and for
any pair of objectsx, y of L every arrow fromx to y is an arrow ofL′. It is easy to see
thatL is a directed set with respect to the latter partial-order, meaning that for any givenL

andL′ in L there existsL′′ ∈ L such thatL′′ ≥ L andL′′ ≥ L′. We will not repeat here
the arguments leading to this conclusion; the crucial fact is that for every finitely generated
subgroupoidΓ ⊂ EG there is an elementL ∈ L such thatΓ is a subgroupoid ofL, which
can be easily proved in the piecewise analytic case [3].

Let us now consider the projective family. For eachL ∈ L, letAL := Hom[L,G] be
the set of all morphisms from the groupoidL to the groupG. We will show next that the
family of spacesAL,L ∈ L, is a so-called compact Hausdorff projective family (see [4]),
meaning that each of the spacesAL is a compact Hausdorff space and that givenL,L′ ∈ L
such thatL′ ≥ L there exists a surjective and continuous projectionpL,L′ : AL′ → AL
such that

pL,L′′ = pL,L′ ◦ pL′,L′′ ∀L′′ ≥ L′ ≥ L. (5)

There is a well-defined notion of limit of the family of spacesAL — the projective limit —
which is also a compact Hausdorff space.

GivenL ∈ L, let {e1, . . . , en} be a set of independent edges that freely generates the
groupoidL. Since the morphismsL → G are uniquely determined by the images of the
generators ofL, one gets a bijectionρe1,...,en : AL → Gn, given by

AL � Ā �→ (Ā(e1), . . . , Ā(en)) ∈ Gn. (6)
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Through this identification withGn, the spaceAL acquires a topology with respect to which
it is a compact Hausdorff space. Notice that the topology induced inAL is independent of
the choice of the generators (including ordering), since maps of the form

(g1, . . . , gn) �→ (g
εk1
k1
, . . . , g

εkn
kn
), (7)

where(k1, . . . , kn) is a permutation of(1, . . . , n) and εki = ±1, are homeomorphisms
Gn → Gn. ForL′ ≥ L let us define the projectionpL,L′ : AL′ → AL as the map that
sends each element ofAL′ to its restriction toL. It is clear that (5) is satisfied. We will now
show that the mapspL,L′ are surjective and continuous. Let{e1, . . . , en} be generators ofL
and{e′1, . . . , e′m} be generators ofL′ ≥ L. Let us consider the decomposition of the edges
ei in terms of the edgese′j :

ei =
∏
j

(e′rij )
εij , i = 1, . . . , n, (8)

whererij andεij take values in the sets{1, . . . , m} and{1,−1}, respectively. An arbitrary
element ofAL is identified by the images(h1, . . . , hn) ∈ Gn of the ordered set of generators
(e1, . . . , en). The mappL,L′ will be surjective if and only if there are(g1, . . . , gm) ∈ Gm

such that

hi =
∏
j

g
εij
rij ∀i. (9)

These conditions can indeed be satisfied, since they are independent. In fact, since the edges
{e1, . . . , en} are independent, a given edgee′k can appear at most once (in the forme′k or
e′−1
k ) in the decomposition (8) of a givenei . To prove continuity notice that, through the

identification (6), the mappL,L′ corresponds to the projectionπn,m : Gm → Gn:

Gm � (g1, . . . , gm)
πn,m�→


∏

j

g
ε1j
r1j , . . . ,

∏
j

g
εnj
rnj


 ∈ Gn, (10)

which is continuous.
The projective limit of the family{AL, pL,L′ }L,L′∈L is the subsetA∞ of the Cartesian

productXL∈LAL of those elements(AL)L∈L satisfying the following consistency condi-
tions:

pL,L′AL′ = AL ∀L′ ≥ L. (11)

The Cartesian product is a compact Hausdorff space with the Tychonov product topology.
Given the continuity of the projectionspL,L′ , the projective limitA∞ is a closed subset
[4,17] and, therefore, is also a compact Hausdorff space. Explicitly, the induced topology
in A∞ is the weakest topology such that all the following projections are continuous:

pL : A∞ → AL, (AL)L∈L �→ AL. (12)

The proof that the projective limitA∞ coincides with the set of all groupoid morphisms
Hom[EG,G] follows essentially the same steps as the proof of the well-known fact that the
algebraic dual of any vector space is a projective limit, and therefore will not be presented
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here (see, e.g. [3,4,17] for the closely related case of the space of generalized connections
modulo gauge transformations). It is interesting to note that Hom[EG,G] can be seen as
being dual (in a non-linear sense) to the groupoidEG. In what follows we will identifyA∞
with Hom[EG,G]. For simplicity, we will refer to the induced topology on Hom[EG,G]
as the Tychonov topology.

3. Relation betweenĀ andA/G in the groupoid-projective approach

In this section, we will study the relation between the space of generalized connections
considered above and the spaceA/G of generalized connections modulo gauge transfor-
mations [3,4], from the point of view of projective techniques. The gauge transformations
act naturally in Hom[EG,G] and, as expected, the quotient of Hom[EG,G] by this action
is homeomorphic toA/G. The proof presented here complements the results in [3–5,7,17]
and clarifies the relation between the two spaces. The introduction of the groupoidEG plays
a relevant simplifying role in this result.

3.1. Gauge transformations,̄A andA/G

We start with a brief review of the projective characterization ofA/G [3,4,17]. A finite
set of hoops{β1, . . . , βn} is said to be independent if each hoopβi contains an edge which
is traversed only once and which is shared by any other hoop at most at a finite number of
points. In the hoop formulation the projective family is labeled by certain “tame” subgroups
of the hoop groupHG ≡ Hom[x0, x0], which are subgroups freely generated by finite sets
of independent hoops. We will denote the family of such subgroups bySH. For eachS ∈ SH
one considers the setχS of all homomorphismsS → G

χS := Hom[S,G]. (13)

The setsχS can be identified with powers ofG and the family{χS}S∈SH is a compact
Hausdorff projective family, whose projective limit is Hom[HG,G], the set of all homo-
morphisms from theHG toG [4]. By means of the projective family, the space Hom[HG,G]
is equipped with a Tychonov-like topology, namely the weakest topology such that all the
natural projections

pS : Hom[HG,G] → χS, S ∈ SH, (14)

defined by restriction toS ⊂ HG, are continuous.
The groupG acts continuously on Hom[HG,G] in the following way [4]:

Hom[HG,G] ×G � (H, g) �→ Hg : Hg(β) = g−1H(β)g ∀β ∈ HG. (15)

This action corresponds to the non-trivial part of the action of the group of generalized
local gauge transformations (see below). It is a well-established fact that the quotient space
Hom[HG,G]/G is homeomorphic toA/G, the “quantum configuration space” which re-
places the classical configuration spaceA/G in the Isham–Ashtekar–Lewandowski ap-
proach to the quantization of theories of connections [2–6,17].
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Let us consider now the corresponding action of local gauge transformations on gener-
alized connections. The group of local gauge transformations associated with the structure
groupG is the groupG of all smooth mapsg : Σ → G, acting on smooth connections as
follows:

A � A �→ g−1Ag+ g−1 dg,

where d denotes the exterior derivative. The corresponding action on parallel transports
A(γ ) defined byA ∈ A andγ ∈ EG is given by

A(γ ) �→ g(x2)
−1A(γ )g(x1), g ∈ G, (16)

wherex1 = s(γ ), x2 = r(γ ). Let us consider the extension̄G of G,

Ḡ = Map[Σ,G] = GΣ ∼= Xx∈ΣGx (17)

of all mapsg : Σ → G, not necessarily smooth or even continuous. This groupḠ of “gen-
eralized local gauge transformations” acts naturally on the space of generalized connections
Hom[EG,G],

Hom[EG,G] × Ḡ � (Ā, g) �→ Āg ∈ Hom[EG,G], (18)

where

Āg(γ ) = g(r(γ ))−1Ā(γ )g(s(γ )) ∀γ ∈ EG, (19)

generalizing (16). It is natural to consider the quotient of Hom[EG,G] by the action ofḠ,
since Hom[EG,G] is also made of all the morphismsEG → G, without any continuity
condition. The group̄G is compact Hausdorff (with the product topology) and its action is
continuous [4,5]. Therefore, Hom[EG,G]/Ḡ is also a compact Hausdorff space.

Let us consider the compact spaceĀ as introduced by Baez [7], e.g. as the Gelfand
spectrum of a commutative unitalC∗-algebra. According to Gelfand theory, the original
C∗-algebra can be identified with the algebraC(Ā) of continuous functions inĀ. The
group of local gauge transformations acts onC(Ā) and the subspaceCG(Ā) ⊂ C(Ā) of
gauge-invariant functions is also a unital commutativeC∗-algebra, whose spectrum we will
denote byĀ/Ḡ.

One, therefore, has four extensions of the classical configuration spaceA/G, namelyA/G,
Ā/Ḡ, Hom[HG,G]/G and Hom[EG,G]/Ḡ. The first two spaces are tied to theC∗-algebra
formalism, whereas the last two appear in the context of projective methods. As expected,
all these spaces are naturally homeomorphic. Let us consider the following diagram:

A/G ↔ Hom[HG,G]/G
�
Ā/Ḡ ↔ Hom[EG,G]/Ḡ.

The correspondence betweenA/G and Hom[HG,G]/Gwas established in [17]. The gener-
alization of this result given in [4] produces a homeomorphism betweenĀand Hom[EG,G].
It is not difficult to show that this homeomorphism is equivariant, leading to a homeomor-
phism betweenĀ/Ḡ and Hom[EG,G]/Ḡ, as suggested in [5]. The correspondence between
A/G andĀ/Ḡ follows from results in [7].
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In the next section, we will show directly (i.e. without using the diagram above) that
Hom[EG,G]/Ḡ is homeomorphic to Hom[HG,G]/G. The relevance of this new proof
of a known result lies in the clear relation established between Hom[EG,G](∼= Ā) and
Hom[HG,G]/G(∼= A/G), without having to rely on the characterization of these spaces
as spectra ofC∗-algebras.

3.2. Equivalence of the projective characterizations ofĀ/Ḡ andA/G

SinceHG ≡ Hom[x0, x0] is a subgroup of the groupoidEG, a projectionP :
Hom[EG,G] → Hom[HG,G], given by the restriction of elements of Hom[EG,G] to
the groupHG, is naturally defined. We will show that this projection is surjective and
equivariant with respect to the actions ofḠ on Hom[EG,G] and Hom[HG,G], thus defin-
ing a map Hom[EG,G]/Ḡ → Hom[HG,G]/G which is in fact a bijection. We will also
show that the latter map and its inverse are continuous.

We start by identifying Hom[EG,G] with Hom[HG,G]×Ḡx0, whereḠx0 is the subgroup
of Ḡ (17) of the elementsg such thatg(x0) = 1. Let us fix a unique edgeex ∈ Hom[x0, x] for
eachx ∈ Σ , ex0 being the trivial hoop. Let us denote this set of edges byΛ = {ex, x ∈ Σ}.
Consider the map

ΘΛ : Hom[EG,G] → Hom[HG,G] × Ḡx0, (20)

whereĀ ∈ Hom[EG,G] is mapped to(H, g) ∈ Hom[HG,G] × Ḡx0 such that

H(β) = Ā(β) ∀β ∈ HG, (21)

and

g(x) = Ā(ex) ∀x ∈ Σ. (22)

Consider also the natural action ofḠ on Hom[HG,G] × Ḡx0 given by

(Hom[HG,G] × Ḡx0)× Ḡ � ((H, g), g′) �→ (Hg′ , gg′), (23)

where

Hg′(β) = g′(x0)
−1H(β)g′(x0) ∀β ∈ HG, (24)

and

gg′(x) = g′(x)−1g(x)g′(x0) ∀x ∈ Σ. (25)

Theorem 1. For any choice of the setΛ, the mapΘΛ is a homeomorphism, equivariant
with respect to the action of̄G.

Proof. It is fairly easy to see thatΘΛ is bijective and equivariant: for a givenΛ, the map
ΘΛ is clearly well-defined and its inverse is given by(H, g) �→ Ā where

Ā(γ ) = g(r(γ ))H(e−1
r(γ )γ es(γ ))g(s(γ ))

−1 ∀γ ∈ EG. (26)

It is also clear thatΘΛ is equivariant with respect to the action ofḠ on Hom[HG,G] × Ḡx0

((24) and (25)) and on Hom[EG,G] ((18) and (19)). It remains to be shown thatΘΛ is a
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homeomorphism. Recall that the topologies of Hom[HG,G] and Hom[EG,G] are defined
by the projective families{χS}S∈SH and{AL}L∈L considered previously.

Given S ∈ SH and x ∈ Σ , let PS and πx , respectively, be the projections from
Hom[HG,G] × Ḡx0 to χS andGx (the copy ofG associated with the pointx). Recall
that the topology of Hom[HG,G] × Ḡx0 is the weakest topology such that all the mapsPS
andπx are continuous. So,ΘΛ is continuous if and only if the mapsPS ◦ΘΛ andπx ◦ΘΛ

are continuous∀S ∈ SH and∀x ∈ Σ . Likewise,Θ−1
Λ is continuous if and only if all

the mapspL ◦ Θ−1
Λ : Hom[HG,G] × Ḡx0 → AL are continuous, where the projections

pL : Hom[EG,G] → AL are defined in (12).
It is straightforward to show that the mapsπx ◦ ΘΛ are continuous: givenx ∈ Σ , one

just has to consider the subgroupoidL = EG{ex} generated by the edgeex ∈ Λ and the
homeomorphism (6)ρex : AL → G. It is clear thatπx ◦ΘΛ coincides withρex ◦pL being,
therefore, continuous.

On the other hand, to show thatPS ◦ ΘΛ andpL ◦ Θ−1
Λ are continuous one needs to

consider explicitly the relation between the spacesAL andχS , L ∈ L, S ∈ SH.

Lemma 3. For everyS ∈ SH there exists a connected subgroupoidL ∈ L such that S is a
subgroup of L. The projection

pS,L : AL → χS (27)

defined by the restriction of elements ofAL to the subgroup S is continuous and satisfies

PS ◦ΘΛ = pS,L ◦ pL (28)

for everyΛ.

Proof. Let us consider a set{β1, . . . , βn} of independent hoops generating the groupS.
For eachβi let us fix a piecewise analytic loop*i in the equivalence classβi and letσi
be the corresponding image inΣ . We choose a set{e1, . . . , em} of independent edges
that decompose∪ni=1σi , i.e. ∪ni=1σi = ∪mj=1σ(ej ), and denote the connected groupoid
EG{e1, . . . , em} ∈ L byL. Since the hoopsβi can be obtained as compositions of edgesej ,
S is a subgroup of the group HomL[x0, x0] of all arrows ofL that start and end atx0. The
generators ofL define an homeomorphism (6) betweenAL andGm and the generators of
S give us an homeomorphism betweenχS andGn. The same arguments used to prove the
continuity of the mapspL,L′ show that the projectionpS,L : AL → χS is continuous (see
Eq. (10)). Relation (28) is obvious. The independence with respect toΛ follows from the
fact that the mappS,L is independent ofΛ. �

The continuity of the mapsPS ◦ΘΛ ∀S ∈ SH, follows immediately from Lemma 3. To
show that the mapspL ◦Θ−1

Λ are continuous one needs the converse of Lemma 3. We will
use the following notation. Given a subgroupoidΓ ⊂ EG, ObjΓ denotes the set of objects
of Γ (the set of all points ofΣ which are range or source for some arrow inΓ ); HomΓ [x, y]
stands for the set of all arrows ofΓ that start atx and end aty andΠΓ denotes the natural
projection fromḠx0 to the subgroup̄Gx0(Γ ) of all maps ObjΓ → G such thatg(x0) = 1.
Notice that, as in Theorem 1, given a set{γx, x ∈ ObjΓ } of arrows ofΓ , with γx0 = 1x0,
one can define a bijection between Hom[Γ,G] and Hom[HomΓ [x0, x0],G] × Ḡx0(Γ ) (in
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this case we use general arrows instead of edges since some of the sets HomΓ [x0, x] may
not contain any edges).

Lemma 4. For everyL ∈ L there existsS ∈ SH and a connected subgroupoidΓ ⊂ EG,
withObjΓ = ObjL∪̇{x0},such thatL ⊂ Γ andHomΓ [x0, x0] = S.The natural projection
from Hom[Γ,G] toAL defines a map

pL,S : χS × Ḡx0(Γ ) → AL, (29)

which is continuous and satisfies

pL ◦Θ−1
Λ = pL,S ◦ (pS ×ΠΓ ) (30)

for an appropriate choice ofΛ.

Proof. Let us consider a seta(L) of independent edges generating the groupoidL. If x0 is
an objectL, we takea(L) such that no edges ina(L) end atx0, which is always possible,
reverting the orientations of some edges if necessary. Let us consider the subset of ObjΓ

of the objects that are not connected tox0 by an edge ina(L). For each such objectx, let
us add to the seta(L) one edge fromx0 to x, and denote bȳa(L) the set of edges thus
obtained. Of course, one can always choose the new edges such that the setā(L) remains
independent. The image inΣ of the set̄a(L) is thus a connected graph, andx0 is a vertex of
this graph. For each objectx ofL, x �= x0, let us choose among the setā(L) an unique edge
from x0 to x, and call itex . Let ex0 be the trivial hoop andΛ(L) := {ex, x ∈ ObjL∪̇{x0}}.
Let {e1, . . . , ek} be the subset ofa(L) of the edges that do not belong toΛ(L). With the
edgesei andex we construct the hoops

βi := e−1
r(ei )

eies(ei ), i = 1, . . . , k. (31)

By construction, the set of hoops{β1, . . . , βk} is independent. LetS be the subgroup ofHG
generated by{β1, . . . , βk}. From Lemma 2, the setΓ of arrows of the formexβe−1

y , with
β ∈ S andx, y ∈ ObjL ∪ {x0}, is a connected groupoid such that ObjΓ = ObjL∪̇{x0}
and HomΓ [x0, x0] = S. The groupoidL is a subgroupoid ofΓ , since all the generators of
L belong toΓ , as we show next. For the edges ina(L) that belong also toΛ(L) one has
ex = ex1x0e

−1
x0

∈ Γ . If, on the other hand, the edge is of the typeei ∈ {e1, . . . , ek}, then

ei = er(ei )βie
−1
s(ei )

∈ Γ . We have, therefore, proved that there existS andΓ such thatL ⊂ Γ

and HomΓ [x0, x0] = S. For the remaining of the proof, letpL,Γ : Hom[Γ,G] → AL be
the projection defined by restriction toL and let

ΘΛ(L)(Γ ) : Hom[Γ,G] → χS × Ḡx0(Γ ) (32)

be the bijection associated to the setΛ(L). We introduce also the notation

pL,S := pL,Γ ◦Θ−1
Λ(L)(Γ ) : χS × Ḡx0(Γ ) → AL. (33)

SinceχS × Ḡx0(Γ ) andAL can be identified with powers ofG, we conclude, as in the proof
of Lemma 3, thatpL,S is continuous. Finally, to prove (30) one just has to consider a set of
edgesΛ that containsΛ(L). �
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Given that the projectionspS : Hom[HG,G] → χS andΠΓ : Ḡx0 → Ḡx0(Γ ) are
continuous, Lemma 4 shows that for every fixedL ∈ L there exists aΛ such thatpL ◦Θ−1

Λ

is continuous, which still does not prove that all the mapspL ◦Θ−1
Λ ,L ∈ L, are continuous

for a givenΛ. We have, however, the following lemma.

Lemma 5. The mapΘΛ ◦Θ−1
Λ′ is a homeomorphism for anyΛ andΛ′.

Proof. Notice that the map

ΘΛ ◦Θ−1
Λ′ : Hom[HG,G] × Ḡx0 → Hom[HG,G] × Ḡx0 (34)

is given by

(H, g) �→ (H ′, g′) (35)

such that

H ′ = H, g′(x) = g(x)H(e−1
x e′x) ∀x ∈ Σ, (36)

whereex ∈ Λ ande′x ∈ Λ′. It is then sufficient to show that the mapsπx ◦ΘΛ ◦Θ−1
Λ′ are

continuous∀x ∈ Σ , sincePS ◦ ΘΛ ◦ Θ−1
Λ′ = PS ∀S ∈ SH. But πx ◦ ΘΛ ◦ Θ−1

Λ′ can be
obtained as composition of the maps

Hom[HG,G] × Ḡx0 � (H, g) �→ (H(e−1
x e′x), g(x)) ∈ G×G, (37)

and

G×G � (g1, g2) �→ g2g1 ∈ G, (38)

which are clearly continuous. �

From Lemma 5, we have the following corollary.

Corollary 1. The continuity ofpL ◦Θ−1
Λ is equivalent to the continuity ofpL ◦Θ−1

Λ′ , for
any other values ofΛ′.

This corollary, together with Lemma 4, shows that, for a givenΛ, all the mapspL ◦Θ−1
Λ ,

L ∈ L, are continuous, which concludes the proof of Theorem 1.

The identification of Hom[EG,G]/Ḡ with Hom[HG,G]/G now follows easily. Consider
a fixedΛ. SinceΘΛ is a homeomorphism equivariant with respect to the continuous action
of Ḡ, we conclude that Hom[EG,G]/Ḡ is homeomorphic to(Hom[HG,G] × Ḡx0)/Ḡ. On
the other hand, it is clear that

Hom[HG,G] × Ḡx0

Ḡ
= Hom[HG,G]

G
× Ḡx0

Ḡx0

∼= Hom[HG,G]

G
. (39)

Thus, as a corollary of Theorem 1 one gets the following theorem.

Theorem 2. The spacesHom[EG,G]/Ḡ andHom[HG,G]/G are homeomorphic.
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It is also interesting to note that the identification Hom[HG,G] × Ḡx0
∼= Hom[EG,G],

through the choice of a set of edgesΛ = {ex, x ∈ Σ} as above, provides a (almost) global
gauge-fixing, meaning that there are sectionsη : Hom[HG,G] → Hom[EG,G] such
thatP ◦ η = id, whereP : Hom[EG,G] → Hom[HG,G] is the canonical projection.
Hom[HG,G] can, therefore, be identified with a subset of Hom[EG,G]. In fact, since the
edgesex in the setΛ are algebraically independent, the space Hom[HG,G] can be seen as
a subset of Hom[EG,G] of all generalized connections with given pre-assigned values on
the setΛ. Choosing, for instance, the identity ofG for all ex , one then has the identification

Hom[HG,G] ∼= {Ā ∈ Hom[EG,G]|Ā(ex) = 1 ∀x ∈ Σ}. (40)

There remains, of course, the non-trivial action of gauge transformations at the base point
x0. A study of the action of the full gauge groupḠ was recently done by Fleischhack [11,13],
leading to stratification results in the context of generalized connections (see also [20]). A
detailed account on the existence of Gribov ambiguities when the full gauge-invariant space
Hom[HG,G]/G ∼= Hom[EG,G]/Ḡ is considered is given in [14].

Acknowledgements

I would like to thank José Mourão, Paulo Sá and Thomas Thiemann, for encouragement
and helpful discussions. This work was supported in part by PRAXIS 2/2.1/FIS/286/94,
CERN/P/FIS/15196/1999 and CENTRA/UAlg.

References

[1] A. Ashtekar, Lectures on Non-perturbative Canonical Quantum Gravity, World Scientific, Singapore, 1991.
[2] A. Ashtekar, C.J. Isham, Representations of the holonomy algebras of gravity and non-Abelian gauge theories,

Class. Quant. Grav. 9 (1992) 1433.
[3] A. Ashtekar, J. Lewandowski, Representation Theory of Analytic HolonomyC� Algebras, in: J. Baez (Ed.),

Knots and Quantum Gravity, Oxford University Press, Oxford, 1994.
[4] A. Ashtekar, J. Lewandowski, Projective technique and functional integration for gauge theories, J. Math.

Phys. 36 (1995) 2170.
[5] A. Ashtekar, J. Lewandowski, Differential geometry on the space of connections via graphs and projective

limits, J. Geom. Phys. 17 (1995) 191.
[6] A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourão, T. Thiemann, Quantization of diffeomorphism invariant

theories of connections with local degrees of freedom, J. Math. Phys. 36 (1995) 6456.
[7] J. Baez, Generalized measures in gauge theory, Lett. Math. Phys. 31 (1994) 213.
[8] J. Baez, Diffeomorphism invariant generalized measures on the space of connections modulo gauge

transformations, in: D. Yetter (Ed.), Proceedings of the Conference on Quantum Topology, World Scientific,
Singapore, 1994.

[9] J. Baez, Spin networks in gauge theories, Adv. Math. 117 (1996) 253.
[10] J. Baez, S. Sawin, Diffeomorphism-invariant spin network states, J. Funct. Anal. 158 (1998) 253.
[11] C. Fleischhack, Gauge orbit types for generalized connections, Preprint arXiv: math-ph/0001006, 2000.
[12] C. Fleischhack, Hyphs and the Ashtekar–Lewandowski measure, Preprint arXiv: math-ph/0001007, 2000.
[13] C. Fleischhack, Stratification of the generalized gauge orbit space, Preprint arXiv: math-ph/0001008, 2000.
[14] C. Fleischhack, On the Gribov problem for generalized connections, Preprint arXiv: math-ph/0007001, 2000.



180 J.M. Velhinho / Journal of Geometry and Physics 41 (2002) 166–180

[15] J. Lewandowski, Group of loops, holonomy maps, path bundle and path connection, Class. Quant. Grav. 10
(1993) 879.

[16] J. Lewandowski, T. Thiemann, Diffeomorphism invariant quantum field theories of connections in terms of
webs, Class. Quant. Grav. 16 (1999) 2299.

[17] D. Marolf, J. Mourão, On the support of the Ashtekar–Lewandowski measure, Commun. Math. Phys. 170
(1995) 583.

[18] J.M. Mourão, T. Thiemann, J.M. Velhinho, J. Math. Phys. 40 (1999) 2337.
[19] T. Thiemann, O. Winkler, Gauge field theory coherent states: IV. Infinite tensor product and termodynamical

limit, Preprint arXiv: hep-th/0005235, 2000.
[20] R. Vilela Mendes, Gauge strata and particle generations, Preprint arXiv: hep-th/0009027, 2000.
[21] S. Weinberg, The Quantum Theory of Fields: Modern Applications, Cambridge University Press, Cambridge,

1996.
[22] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351.


	A groupoid approach to spaces of generalized connections
	Introduction
	Groupoid-projective formulation of A
	Edge groupoid
	A as a projective limit

	Relation between A and A/G in the groupoid-projective approach
	Gauge transformations, A and A/G
	Equivalence of the projective characterizations of A and A/G

	Acknowledgements
	References


